4.6 Article

Toward Unobtrusive In-Home Gait Analysis Based on Radar Micro-Doppler Signatures

期刊

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
卷 66, 期 9, 页码 2629-2640

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TBME.2019.2893528

关键词

Assisted living; biomedical monitoring; Doppler radar; gait recognition; radar signal processing

资金

  1. Alexander von Humboldt Foundation, Bonn, Germany

向作者/读者索取更多资源

Objective: In this paper, we demonstrate the applicability of radar for gait classification with application to home security, medical diagnosis, rehabilitation, and assisted living. Aiming at identifying changes in gait patterns based on radar micro-Doppler signatures, this paper is concerned with solving the intra motion category classification problem of gait recognition. Methods: New gait classification approaches utilizing physical features, subspace features, and sum-of-harmonics modeling are presented and their performances are evaluated using experimental K-band radar data of four test subjects. Five different gait classes are considered for each person, including normal, pathological, and assisted walks. Results: The proposed approaches are shown to outperform existing methods for radar-based gait recognition, which utilize physical features from the cadence-velocity data representation domain as in this paper. The analyzed gait classes are correctly identified with an average accuracy of 93.8%, where a classification rate of 98.5% is achieved for a single gait class. When applied to new data of another individual, a classification accuracy on the order of 80% can be expected. Conclusion: Radar micro-Doppler signatures and their Fourier transforms are well suited to capture changes in gait. Five different walking styles are recognized with high accuracy. Significance: Radar-based sensing of gait is an emerging technology with multi-faceted applications in security and health care industries. We show that radar, as a contact-less sensing technology, can supplement existing gait diagnostic tools with respect to long-term monitoring and reproducibility of the examinations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据