4.7 Article

Patterns of co-altered brain structure and function underlying neurological soft signs in schizophrenia spectrum disorders

期刊

HUMAN BRAIN MAPPING
卷 40, 期 17, 页码 5029-5041

出版社

WILEY
DOI: 10.1002/hbm.24755

关键词

gray matter volume; mCCA plus jICA; motor abnormalities; neurological soft signs; resting-state functional MRI; schizophrenia spectrum disorders

资金

  1. Bundesministerium fur Bildung und Forschung [01GQ1102]
  2. Deutsche Forschungsgemeinschaft [HI 1928/2-1, WO 1883/6-1]

向作者/读者索取更多资源

Neurological soft signs (NSS) comprise a broad range of subtle neurological deficits and are considered to represent external markers of sensorimotor dysfunction frequently found in mental disorders of presumed neurodevelopmental origin. Although NSS frequently occur in schizophrenia spectrum disorders (SSD), specific patterns of co-altered brain structure and function underlying NSS in SSD have not been investigated so far. It is unclear whether gray matter volume (GMV) alterations or aberrant brain activity or a combination of both, are associated with NSS in SSD. Here, 37 right-handed SSD patients and 37 matched healthy controls underwent motor assessment and magnetic resonance imaging (MRI) at 3 T. NSS were examined on the Heidelberg NSS scale. We used a multivariate data fusion technique for multimodal MRI data-multiset canonical correlation and joint independent component analysis (mCCA + jICA)-to investigate co-altered patterns of GMV and intrinsic neural fluctuations (INF) in SSD patients exhibiting NSS. The mCCA + jICA model indicated two joint group-discriminating components (temporoparietal/cortical sensorimotor and frontocerebellar/frontoparietal networks) and one modality-specific group-discriminating component (p < .05, FDR corrected). NSS motor score was associated with joint frontocerebellar/frontoparietal networks in SSD patients. This study highlights complex neural pathomechanisms underlying NSS in SSD suggesting aberrant structure and function, predominantly in cortical and cerebellar systems that critically subserve sensorimotor dynamics and psychomotor organization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据