4.3 Article

Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity

期刊

HUMAN & EXPERIMENTAL TOXICOLOGY
卷 39, 期 1, 页码 77-85

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0960327119877437

关键词

Methotrexate; H2S; IL-6/STAT3; K-ATP channel; eNOS; TRPV1

向作者/读者索取更多资源

Methotrexate (MTX) is a commonly used anticancer and immunosuppressive agent. However, MTX can induce hepatotoxicity due to oxidative stress, inflammation, and apoptosis. Hydrogen sulfide (H2S), the endogenous gaseous molecule, has antioxidant, anti-inflammatory, and anti-apoptotic effects. The present work explored the probable protective effect of H2S against MTX hepatotoxicity in rats and also the possible mechanisms underlying this effect. MTX was given at a single intraperitoneal (i.p.) dose of 20 mg/kg. Sodium H2S (56 mu mol /kg/day, i.p.), as H2S donor, was given for 10 days, starting 6 days before MTX administration. H2S significantly reduced serum alanine aminotransferase, hepatic malondialdehyde, interleukin 6, nuclear factor kappa B p65, cytosolic cytochrome c, phosphorylated signal transducer and activator of transcription 3, and Bax/Bcl-2 ratio and significantly increased hepatic total antioxidant capacity and endothelial nitric oxide synthase (eNOS) in rats received MTX. In addition, H2S minimized the histopathological injury and significantly decreased the expression of STAT3 in liver tissue of MTX-challenged rats. The effects of H2S were significantly antagonized by administration of glibenclamide as K-ATP channel blocker, N omega-nitro-l-arginine, as eNOS inhibitor, or ruthenium red, as transient receptor potential vanilloid 1 (TRPV1) antagonist. It was concluded that H2S provided significant hepatoprotection in MTX-challenged rats through its antioxidant, anti-inflammatory, anti-apoptotic effects. These effects are most probably mediated by the ability of H2S to act as IL-6/STAT3 pathway modulator, K-ATP channel opener, eNOS activator, and TRPV1 agonist.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据