4.4 Article

Thermodynamic irreversibility and conjugate effects of integrated microchannel cooling device using TiO2 nanofluid

期刊

HEAT AND MASS TRANSFER
卷 56, 期 2, 页码 489-505

出版社

SPRINGER
DOI: 10.1007/s00231-019-02704-z

关键词

-

向作者/读者索取更多资源

Thermal management is highly essential for the latest electronic devices to effectively dissipate heat in a densely packed environment. Usually, these high power devices are cooled by integrating micro scale cooling systems. Most of the works reported in the literature majorly concentrate on microchannel heat sink in which the characteristics of friction factor and enhancement of heat transfer are analyzed in detail. However, due to the advent of compact electronic devices a crucial investigation is required to facilitate an amicable environment for the neighboring components so as to improve the reliability of the electronic devices. Henceforth, in the present study a combined experimental and numerical analysis is performed to provide an insight to determine the performance of a copper microchannel integrated with aluminium block using TiO2 nanofluid for different particle configurations. Needless to say, the present study, which also focuses on entropy generation usually attributed to the thermodynamic irreversibility, is very much significant to design an optimum operating condition for better reliability and performance of the cooling devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据