4.6 Article

Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia

期刊

GLIA
卷 68, 期 2, 页码 280-297

出版社

WILEY
DOI: 10.1002/glia.23716

关键词

astrocytes; brain inflammation; microglia; PET; translocator protein

资金

  1. Biotechnology and Biological Sciences Research Council [BB/P026311/1]
  2. Cancer Research UK [C5255/A12678, C5255/A15935, C5255/A16466]
  3. Medical Research Council
  4. Swiss National Science Foundation [P2BSP2_178609]
  5. Swiss National Science Foundation (SNF) [P2BSP2_178609] Funding Source: Swiss National Science Foundation (SNF)
  6. BBSRC [BB/P026311/1] Funding Source: UKRI
  7. MRC [MR/R01695X/1] Funding Source: UKRI

向作者/读者索取更多资源

Translocator protein (TSPO) expression is increased in activated glia, and has been used as a marker of neuroinflammation in PET imaging. However, the extent to which TSPO upregulation reflects a pro- or anti-inflammatory phenotype remains unclear. Our aim was to determine whether TSPO upregulation in astrocytes and microglia/macrophages is limited to a specific inflammatory phenotype. TSPO upregulation was assessed by flow cytometry in cultured astrocytes, microglia, and macrophages stimulated with lipopolysaccharide (LPS), tumor necrosis factor (TNF), or interleukin-4 (Il-4). Subsequently, mice were injected intracerebrally with either a TNF-inducing adenovirus (AdTNF) or IL-4. Glial expression of TSPO and pro-/anti-inflammatory markers was assessed by immunohistochemistry/fluorescence and flow cytometry. Finally, AdTNF or IL-4 injected mice underwent PET imaging with injection of the TSPO radioligand F-18-DPA-713, followed by ex vivo autoradiography. TSPO expression was significantly increased in pro-inflammatory microglia/macrophages and astrocytes both in vitro, and in vivo after AdTNF injection (p < .001 vs. control hemisphere), determined both histologically and by FACS. Both PET imaging and autoradiography revealed a significant (p < .001) increase in F-18-DPA-713 binding in the ipsilateral hemisphere of AdTNF-injected mice. In contrast, no increase in either TSPO expression assessed histologically and by FACS, or ligand binding by PET/autoradiography was observed after IL-4 injection. Taken together, these results suggest that TSPO imaging specifically reveals the pro-inflammatory population of activated glial cells in the brain in response to inflammatory stimuli. Since the inflammatory phenotype of glial cells is critical to their role in neurological disease, these findings may enhance the utility and application of TSPO imaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据