4.5 Article

Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant-bacteria-phage system

期刊

EVOLUTION
卷 73, 期 12, 页码 2461-2475

出版社

WILEY
DOI: 10.1111/evo.13833

关键词

Bacteria; experimental evolution; host-parasite; phage; and resistance

资金

  1. National Science Foundation Graduate Research Fellowship [DGE 1106400, DGE 1752814]
  2. University of California, Berkeley

向作者/读者索取更多资源

The evolution of resistance to parasites is fundamentally important to disease ecology, yet we remain unable to predict when and how resistance will evolve. This is largely due to the context-dependent nature of host-parasite interactions, as the benefit of resistance will depend on the abiotic and biotic environment. Through experimental evolution of the plant pathogenic bacterium Pseudomonas syringae and two lytic bacteriophages across two different environments (high-nutrient media and the tomato leaf apoplast), we demonstrate that de novo evolution of resistance is negligible in planta despite high levels of resistance evolution in vitro. We find no evidence supporting the evolution of phage-selected resistance in planta despite multiple passaging experiments, multiple assays for resistance, and high multiplicities of infection. Additionally, we find that phage-resistant mutants (evolved in vitro) did not realize a fitness benefit over phage-sensitive cells when grown in planta in the presence of phage, despite reduced growth of sensitive cells, evidence of phage replication in planta, and a large fitness benefit in the presence of phage observed in vitro. Thus, this context-dependent benefit of phage resistance led to different evolutionary outcomes across environments. These results underscore the importance of studying the evolution of parasite resistance in ecologically relevant environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据