4.5 Article

Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis

期刊

EUROPEAN JOURNAL OF MECHANICS B-FLUIDS
卷 79, 期 -, 页码 376-385

出版社

ELSEVIER
DOI: 10.1016/j.euromechflu.2019.09.015

关键词

Bone scaffolds; Permeability; Wall shear stress; Minimal surface architectures; Lattice-based architectures

向作者/读者索取更多资源

Fluid flow dynamics within porous scaffolds for tissue engineering play a critical role in the transport of fundamental materials to the cells and in controlling the biocompatibility of the scaffold. Properties such as permeability and fluid flow-induced wall shear stress characterize the biological behavior of the scaffolds. Bioactivity depends on the diffusion of oxygen and other nutritious elements through the porous medium and fluid flow-induced shear stress is known as the dominant mechanical stimulant of cell differentiation and proliferation within the scaffolds. In this study, eight different bone scaffold models with a constant porosity of 80% were designed computationally using the TPMS and lattice-based structures. We investigated the fluid flow within the scaffolds using CFD analysis. The results of the work showed that scaffold architecture has a significant impact on the permeability and that scaffold permeability can vary up to three times depending on the architecture. The scaffolds with the minimal variation in their channel size exhibited the highest permeability. We investigated the distribution statistics of wall shear stress on the walls of the scaffolds and showed that a correlation between the architecture of the scaffolds and the distribution statistics of wall shear stress did not exist. The outcomings of this work can be promising in designing better scaffolds in tissue engineering from a biological point of view. (C) 2019 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据