4.5 Article

Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes

期刊

EPIGENETICS
卷 15, 期 3, 页码 251-271

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15592294.2019.1664229

关键词

Histone acetylation; chromatin; epigenetics; gene regulation; osmotic stress; hog1; chip-on-chip

资金

  1. Spanish MiNECO [BFU2013-48643-C3-3-P, BFU2016-77728-C3-3-P, BES-2014-070587]
  2. Regional Valencian Government (Generalitat Valenciana) [PROMETEO II 2015/006]
  3. Universitat de Valencia [UV-INV-AE13-139034]
  4. European Union funds (FEDER)
  5. Generalitat Valenciana [BFU2013-48643-C3-3-P, BFU2016-77728-C3-3-P]

向作者/读者索取更多资源

Epigenetic information is able to interact with the cellular environment and could be especially useful for reprograming gene expression in response to a physiological perturbation. In fact the genes induced or repressed by osmotic stress undergo significant changes in terms of the levels of various histone modifications, especially in the acetylation levels of histone H3. Exposing yeast to high osmolarity results in the activation of stress-activated protein kinase Hog1, which plays a central role in gene expression control. We evaluated the connection between the presence of Hog1 and changes in histone H3 acetylation in stress-regulated genes. We found a parallel increase in the acetylation of lysines 9 and 14 of H3 in induced genes during stress, which was largely dependent on Hog1 at the genome-wide level. Conversely, we observed that acetylation decreased in repressed genes and was not dependent on Hog1. However, lack of Hog1 sometimes produced different, and even opposite, effects on the induction and acetylation of H3 of each gene. We also found that the acetylation state of lysine 9 of H3 was altered in the strains deficient in Nut1 HAT and Hos1 HDAC in the genes up-regulated during osmotic stress in an Msn2/Msn4-independent manner, while lysine 9 acetylation of H3 varied in the strains deficient in Sas2 HAT and Rpd3 HDAC for the Msn2/Msn4-dependent induced genes. The results presented here show new, unexpected participants in gene regulation processes in response to environmental perturbations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据