4.7 Article

Cooling load forecasting-based predictive optimisation for chiller plants

期刊

ENERGY AND BUILDINGS
卷 198, 期 -, 页码 261-274

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2019.06.016

关键词

Chiller plants; Predictive supervisory optimisation; Cooling load forecast; Energy efficiency

资金

  1. Research Grant Council of the Hong Kong Special Administrative Region, China [CityU 11209518]
  2. DOE -The United States [DE-AC02-05CH11231]
  3. Energy Foundation
  4. Shenzhen Institute of Building Research

向作者/读者索取更多资源

Extensive electric power is required to maintain indoor thermal comfort using heating, ventilation and air conditioning (HVAC) systems, of which, water-cooled chiller plants consume more than 50% of the total electric power. To improve energy efficiency, supervisory optimisation control can be adopted. The controlled variables are usually optimised according to instant building cooling load and ambient wet bulb air temperature at regular time intervals. In this way, the energy efficiency of chiller plants has been improved. However, with an inherent assumption that the instant building cooling load and ambient wet bulb temperature remain constant in the coming time interval, the energy efficiency potential has not been fully realised, especially when cooling loads vary suddenly and extremely. To solve this problem, a cooling load forecasting-based predictive optimisation method is proposed. Instead of minimising the instant system power according to the instant building cooling load and ambient wet bulb temperature, the controlled variables are derived to minimise the sum of the instant system power and one-time-step-ahead future system power according to both instant and forecasted future building cooling loads. With this method, the energy efficiency potential of a chiller plant can be further improved without shortening the operation time interval. 80% redundant energy consumption has been reduced for the sample chiller plant; energy can be saved for chiller plants that work for years. The evaluation on the effect of cooling load forecasting accuracy turns out that the more accurate the forecasts are, the more redundant energy consumption can be reduced. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据