4.5 Article

Mesopore-Controllable Carbon Aerogel and their Highly Loaded PtRu Anode Electrocatalyst for DMFC Applications

期刊

ELECTROANALYSIS
卷 32, 期 1, 页码 104-111

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/elan.201900320

关键词

DMFC; carbon aerogel; mass transport; anode electrocatalyst

资金

  1. Catholic University of Korea, Research Fund, 2018
  2. National Research Foundation of Korea (NRF) - Korea government (MSIT) [2018R1C1B5085888]
  3. National Research Foundation of Korea [2018R1C1B5085888] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Catalyst loading and layer thickness are crucial factors to enhance the cell performance and to reduce cost of membrane electrode assemblies (MEAs). Outstanding properties, such as large surface area to disperse metal nanoparticles and sufficient pore volume and size, is needed in utilization of fuel cell. Carbon aerogels are one of the good candidates that meets the above conditions. Those are synthesized by polycondensation reaction of resorcinol and formaldehyde (RF) polymer, supercritical drying to keep pore skeleton structure caused by capillary force and calcination of RF polymer in nitrogen atmosphere to be controllable meso pore (2 similar to 43 nm) as role of support for electric conductor and dispersion of metal nanoparticles. In order to utilization of anode catalyst in direct methanol fuel cell, highly loaded (80 weight percent) platinum and ruthenium onto carbon aerogel are synthesized by Bonnemann colloid method. The single cell test of carbon aerogel supported PtRu anode catalyst is performed and over 40 nm pore sized-catalysts are the best performance due to sufficient surface area to anchor uniform and small metal nanoparticles and good pathway to drive fuel and outgas even though PtRu nanoparticles are anchored on the outer surface of carbons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据