4.6 Article

The IACOB project IV. New predictions for high-degree non-radial mode instability domains in massive stars and their connection with macroturbulent broadening

期刊

ASTRONOMY & ASTROPHYSICS
卷 597, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201628856

关键词

techniques: spectroscopic; asteroseismology; stars: early-type; stars: oscillations; stars: massive

资金

  1. Spanish Ministry of Economy and Competitiveness (MINECO) [AYA2010-21697-C05-04, AYA2012-39364-C02-01]
  2. Research Council of KULeuven [GOA/2013/012]
  3. [SEV-2011-0187]

向作者/读者索取更多资源

Context. Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated with the analysis of time-resolved observations. Recently, the so-called macroturbulent broadening has been proposed as a complementary and less expensive way-in terms of observational time - to investigate pulsations in massive stars. Aims. We assess to what extent this ubiquitous non-rotational broadening component which shapes the line profiles of O stars and B supergiants is a spectroscopic signature of pulsation modes driven by a heat mechanism. Methods. We compute stellar main-sequence and post-main-sequence models from 3 to 70 M-circle dot with the ATON stellar evolution code, and determine the instability domains for heat-driven modes for degrees l = 1-20 using the adiabatic and non-adiabatic codes LOSC and MAD. We use the observational material compiled in the framework of the IACOB project to investigate possible correlations between the single snapshot line-broadening properties of a sample of approximate to 260 O and B-type stars and their location inside or outside the various predicted instability domains. Results. We present an homogeneous prediction for the non-radial instability domains of massive stars for degree l up to 20. We provide a global picture of what to expect from an observational point of view in terms of the frequency range of excited modes, and we investigate the behavior of the instabilities with respect to stellar evolution and the degree of the mode. Furthermore, our pulsational stability analysis, once compared to the empirical results, indicates that stellar oscillations originated by a heat mechanism cannot explain alone the occurrence of the large non-rotational line-broadening component commonly detected in the O star and B supergiant domain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据