4.6 Article

Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium

期刊

DENTAL MATERIALS
卷 35, 期 11, 页码 1665-1681

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2019.08.115

关键词

Titanium dioxide; Upconversion nanoparticles; Antibacterial; Near-infrared; Photodynamic therapy; Periodontitis biofilms

资金

  1. National Science Foundation of China [81570983, 81400487, 61775080]
  2. International Cooperation of Science and Technology Jilin Province [20180414030GH]
  3. China Postdoctoral Science Foundation [2015M581405, 2017T100213]
  4. 13th Five-Year Plan of the Science Foundation of Education Board of Jilin Province [JJKH20180235KJ]
  5. University of Maryland School of Dentistry Seed Grant

向作者/读者索取更多资源

Objective. Periodontal tissue destruction and tooth loss are increasingly a worldwide problem as the population ages. Periodontitis is caused by bacterial infection and biofilm plaque buildup. Therefore, the objectives of this study were to: (1) develop a near-infrared light (NIR)-triggered core-shell nanostructure of upconversion nanoparticles and TiO2 (UCNPs@TiO2), and (2) investigate its inhibitory effects via antibacterial photodynamic therapy (aPDT) against periodontitis-related pathogens. Methods. The core beta-NaYF4:Yb3+,Tm3+ were synthesized via thermal decomposition and further modified with the TiO2 shell via a hydrothermal method. The core-shell structure and the upconversion fluorescence-induced aPDT treatment via 980 nm laser were studied. Three periodontitis-related pathogens Streptococcus sanguinis (S. sanguinis), Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) were investigated. The killing activity against planktonic bacteria was detected by a time-kill assay. Single species 4-day biofilms on dentin were tested by live/dead staining, colony-forming units (CFU), and metabolic activity. Results. The hexagonal shaped UCNPs@TiO2 had an average diameter of 39.7 nm. UCNPs@TiO2 nanoparticles had positively charged (+12.4 mV) surface and were biocompatible and non-cytotoxic. Under the excitation of NIR light (980 nm), the core NaYF4:Yb3+,Tm3+ UCNPs could emit intense ultraviolet (UV) light, which further triggered the aPDT function of the shell TiO2 via energy transfer, thereby realizing the remarkable antibacterial effects against planktons and biofilms of periodontitis-associated pathogens. NIR-triggered UCNPs@TiO2 achieved much greater reduction in biofilms than control (p < 0.05). Biofilm CFU was reduced by 3-4 orders of magnitude via NIR-triggered aPDT, which is significantly greater than that of negative control and commercial aPDT control groups. The killing efficacy of UCNPs@TiO2-based aPDT against the three species was ranked to be: S. sanguinis

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据