4.6 Review

G4-Interacting DNA Helicases and Polymerases: Potential Therapeutic Targets

期刊

CURRENT MEDICINAL CHEMISTRY
卷 26, 期 16, 页码 2881-2897

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/0929867324666171116123345

关键词

G-quadruplex; replication; helicase; polymerase; translesion synthesis; G4 DNA; PrimPol

资金

  1. National Institutes of Health, National Institute on Aging, Laboratory of Molecular Gerontology
  2. Laboratory of Genetics and Genomics
  3. NATIONAL INSTITUTE ON AGING [ZIAAG000752, ZIAAG000753, ZIAAG000741] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Background: Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). In recent years, the G-quadruplex field has blossomed as new evidence strongly suggests that such alternately folded DNA structures are likely to exist in vivo. G4 DNA presents obstacles for the replication machinery, and both eukaryotic DNA helicases and polymerases have evolved to resolve and copy G4 DNA in vivo. In addition, G4-forming sequences are prevalent in gene promoters, suggesting that G4-resolving helicases act to modulate transcription. Methods: We have searched the PubMed database to compile an up-to-date and comprehensive assessment of the field's current knowledge to provide an overview of the molecular interactions of G-quadruplexes with DNA helicases and polymerases implicated in their resolution. Results: Novel computational tools and alternative strategies have emerged to detect G4-forming sequences and assess their biological consequences. Specialized DNA helicases and polymerases catalytically act upon G4-forming sequences to maintain normal replication and genomic stability as well as appropriate gene regulation and cellular homeostasis. G4 helicases also resolve telomeric repeats to maintain chromosomal DNA ends. Bypass of many G4-forming sequences is achieved by the action of translesion DNS polymerases or the PrimPol DNA polymerase. While the collective work has supported a role of G4 in nuclear DNA metabolism, an emerging field centers on G4 abundance in the mitochondrial genome. Conclusion: Discovery of small molecules that specifically bind and modulate DNA helicases and polymerases or interact with the G4 DNA structure itself may be useful for the development of anticancer regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据