4.3 Article

Three-dimensional structural optimization of a cementless hip stem using a bi-directional evolutionary method

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10255842.2019.1661387

关键词

Structural optimization; hip prosthesis; bone remodeling; stress shielding; finite element analysis

向作者/读者索取更多资源

A correct choice of stem geometry can increase the lifetime of hip implant in a total hip arthroplasty. This study presents a numerical methodology for structural optimization of stem geometry using a bi-directional evolutionary structural optimization method. The optimization problem was formulated with the objective of minimizing the stresses in the bone-stem interface. Finite element analysis was used to obtain stress distributions by three-dimensional simulation of the implant and the surrounding bone under normal walking conditions. To compare the initial and the optimal stems, the von Mises stress distribution in the bone-implant interface was investigated. Results showed that the optimization procedure leads to a decrease in the stress concentration in the implant and a reduction in stress shielding of the surrounding bone. Furthermore, periprosthetic bone adaptation was analyzed numerically using an adaptive bone remodeling procedure. The remodeling results showed that the bone mass loss could be reduced by 16% in the optimal implant compared to the initial one.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据