4.6 Article

MicroRNA-423 may regulate diabetic vasculopathy

期刊

CLINICAL AND EXPERIMENTAL MEDICINE
卷 19, 期 4, 页码 469-477

出版社

SPRINGER-VERLAG ITALIA SRL
DOI: 10.1007/s10238-019-00573-8

关键词

miR-423; NO; VEGF; NO-dependent pathways

向作者/读者索取更多资源

To test the hypothesis that microRNAs may play a role in diabetic retinopathy, we measured the levels of different markers [microRNAs, vascular endothelial growth factor (VEGF), nitric oxide (NO), and total antioxidant capacity (TAO)] in patients with type 2 diabetes mellitus (T2DM) and microvascular complications. Sixty-nine patients were recruited: 22 healthy subjects, ten T2DM patients without retinopathy, 22 with nonproliferative diabetic retinopathy, and 15 with proliferative diabetic retinopathy (PDR). Serum levels of NO, VEGF, TAO and 16 candidate microRNAs were measured. Additionally, the mRNA levels of endothelial nitric oxide synthase (eNOS), induced NOS (iNOS), C reactive protein (CRP), VEGF, tumor necrosis factor alpha (TNF alpha), PON2, p22, and SOD2 were measured in human vascular endothelial cells cultured in the presence of pooled sera from the subject groups. Plasma miR-423 levels showed a significant twofold decrease in patients with PDR compared to controls. P lasma NO levels were significantly higher in retinopathy, VEGF levels were significantly lower, and TAO was significantly decreased. eNOS mRNA levels were lower in the cells of T2DM patients without retinopathy, but higher in PDR. PON2, p22, and SOD2 mRNA levels were all significantly lower in PDR. CRP, TNF alpha, iNOS, and VEGF mRNA levels showed no significant association with disease status. Lowered miR-423 levels in diabetic patients showed a correlation with VEGF and an inverse correlation between NO and eNOS expression. Our findings suggest a cross talk between miR-423 and VEGF signaling, affecting eNOS function. miR-423 may be involved in the regulation of diabetic vascular retinal proliferation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据