4.7 Review

Mitochondrial dysfunction in diabetic kidney disease

期刊

CLINICA CHIMICA ACTA
卷 496, 期 -, 页码 108-116

出版社

ELSEVIER
DOI: 10.1016/j.cca.2019.07.005

关键词

Mitochondrial dysfunction; Diabetic nephropathy; mtDNA

资金

  1. Chinese University of Hong Kong (CUHK) [6901031, 7101215]

向作者/读者索取更多资源

Although diabetic kidney disease (DKD) is the most common cause of end-stage kidney disease worldwide, the pathogenic mechanisms are poorly understood. There is increasing evidence that mitochondrial dysfunction contributes to the development and progression of DKD. Because the kidney is the organ with the second highest oxygen consumption in our body, it is distinctly sensitive to mitochondrial dysfunction. Mitochondrial dysfunction contributes to the progression of chronic kidney disease irrespective of underlying cause. More importantly, high plasma glucose directly damages renal tubular cells, resulting in a wide range of metabolic and cellular dysfunction. Overproduction of reactive oxygen species (ROS), activation of apoptotic pathway, and defective mitophagy are interlinked mechanisms that play pivotal roles in the progression of DKD. Although renal tubular cells have the highest mitochondrial content, podocytes, mesangial cells, and glomerular endothelial cells may all be affected by diabetes-induced mitochondrial injury. Urinary mitochondrial DNA (mtDNA) is readily detectable and may serve as a marker of mitochondrial damage in DKD. Unfortunately, pharmacologic modulation of mitochondrial dysfunction for the treatment of DKD is still in its infancy. Nonetheless, understanding the pathobiology of mitochondrial dysfunction in DKD would facilitate the development of novel therapeutic strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据