4.7 Review

Recent progress in nanomaterial-enhanced fluorescence polarization/anisotropy sensors

期刊

CHINESE CHEMICAL LETTERS
卷 30, 期 9, 页码 1575-1580

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2019.06.005

关键词

Fluorescence polarization/anisotropy; Nanomaterials; Sensor; Recent progress; Application

资金

  1. National Natural Science Foundation of China [21822407, 21405163]
  2. top priority program of One-Three-Five Strategic Planning of Lanzhou Institute of Chemical Physics, CAS

向作者/读者索取更多资源

As a promising signaling transduction approach, fluorescence polarization (FP)/fluorescence anisotropy (FA), provides a powerful quantitative tool for the rotational motion of fluorescently labeled molecules in chemical or biological homogeneous systems. Unlike fluorescence intensity, FP/FA is almost independent the concentration or quantum of fluorophores, but they are highly dependent on the size or molecular weight of the molecules or materials attached to fluorophores. Recently, significant progress in FP/FA was made, due to the introduction of some nanomaterials as FP/FA enhancers. The detection sensitivity is thus greatly improved by using nanomaterials as FP/FA enhancers, and nanomaterial-based FP/FA is currently used successfully in immunoassay, and analysis of protein, nucleic acid, small molecule and metal ion. Nanomaterial-based FP/FA provides a new kind of strategy to design fluorescent sensors and establishes innovative analytical methods. In this review, we summarize the scientific publications in the field of FP/FA sensor in recent five years, and first introduce the recent progress of FP/FA sensor based on nanomaterial. Subsequently, the various analytical applications of FP/FA based on nanomaterial are discussed. Finally, we provide perspectives on the current challenges and future prospects in this promising field. (C) 2019 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据