4.7 Article

Catalytic degradation of p-nitrophenol by magnetically recoverable Fe3O4 as a persulfate activator under microwave irradiation

期刊

CHEMOSPHERE
卷 240, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124977

关键词

Magnetic Fe3O4; Persulfate; Microwave; P-nitrophenol; Sulfate radical; Wastewater treatment

资金

  1. National Natural Science Foundation of China [51678185, 51779066]
  2. Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [QA201924]
  3. China Scholarship Council [201806120348]

向作者/读者索取更多资源

In this study, Fe3O4 and microwave (MW) were combined to activate persulfate (PS) for the removal of organic matter, resulting in the enhanced degradation of p-nitrophenol (PNP) in solution. During the preparation of Fe3O4, the effect of sodium acetate was examined, and the results showed that the concentration of sodium acetate had little effect on the catalytic activity of the Fe3O4/PS/MW system but did have an effect on the Fe3O4 yield. In addition, with regards to the representative environmental factors, the degradation experiment showed that humic acid and the co-existing anions of chloride, sulfate, nitrate, and phosphate had little effects on p-nitrophenol removal; however, carbonate had a negative effect. In addition, the Fe3O4/PS/MW system performed well in the initial pH range of 3.0-9.0. According to the quenching experiment and electron paramagnetic resonance (EPR) detection, sulfate radicals and a minority of hydroxyl radicals play dominant roles in the degradation process. In addition, the role of Fe3O4 was confirmed to take part in the degradation process by X-ray photoelectron spectroscopy (XPS) analysis. Because of the good performance observed in the water matrices of tap water and the Songhua River, these results demonstrate the potential application of the Fe3O4/PS/MW system for wastewater treatment. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据