4.6 Article

Hierarchical Mn3O4 Anchored on 3D Graphene Aerogels via C-O-Mn Linkage with Superior Electrochemical Performance for Flexible Asymmetric Supercapacitor

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 26, 期 42, 页码 9314-9318

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201903947

关键词

asymmetric supercapacitors; carbon nanohorns; flexible electronics; graphene aerogels; manganese

资金

  1. National Natural Science Foundation of China [21646012]
  2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [2016DX08]
  3. China Postdoctoral Science Foundation [2016M600253, 2017T100246]
  4. Postdoctoral Foundation of Heilongjiang Province
  5. Fundamental Research Funds for the Central Universities
  6. NSRIF [201836]

向作者/读者索取更多资源

Flexible asymmetric supercapacitors are more appealing in flexible electronics because of high power density, wide cell voltage, and higher energy density than symmetric supercapacitors in aqueous electrolyte. In virtues of excellent conductivity, rich porous structure and interconnected honeycomb structure, three dimensional graphene aerogels show great potential as electrode in asymmetric supercapacitors. However, graphene aerogels are rarely used in flexible asymmetric supercapacitors because of easily re-stacking of graphene sheets, resulting in low electrochemical activity. Herein, flower-like hierarchical Mn3O4 and carbon nanohorns are incorporated into three dimensional graphene aerogels to restrain the stack of graphene sheets, and are applied as the positive and negative electrode for asymmetric supercapacitors devices, respectively. Besides, a strong chemical coupling between Mn3O4 and graphene via the C-O-Mn linkage is constructed and can provide a good electron-transport pathway during cycles. Consequently, the asymmetric supercapacitor device shows high rate cycle stability (87.8 % after 5000 cycles) and achieves a high energy density of 17.4 mu Wh cm(-2) with power density of 14.1 mW cm(-2) (156.7 mW cm(-3)) at 1.4 V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据