4.7 Article

Downregulation of microRNA-302b-3p relieves oxygen-glucose deprivation/re-oxygenation induced injury in murine hippocampal neurons through up-regulating Nrf2 signaling by targeting fibroblast growth factor 15/19

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 309, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2019.06.018

关键词

Cerebral ischaemia/reperfusion injury; FGF15; Nrf2; GSK-3 beta

资金

  1. Science and Technology Research and Development Program in Shaanxi Province of China [2015SF046]

向作者/读者索取更多资源

MicroRNAs have emerged as critical mediators of cerebral ischaemia/reperfusion injury. Recent studies have demonstrated that microRNA-302b-3p (miR-302b-3p) plays an important role in regulating apoptosis and oxidative stress in various cells. However, whether miR-302b-3p is involved in regulating cerebral ischaemia/reperfusion injury-induced neuronal apoptosis and oxidative stress remains unknown. In the present study, we explored the potential function and molecular mechanism of miR-302b-3p in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury, using an in vitro model of cerebral ischaemia/reperfusion injury. We found that miR-302b-3p expression was up-regulated by OGD/R treatment in neurons. The inhibition of miR302b-3p improved cell viability, and reduced apoptosis and the production of reactive oxygen species, showing a protective effect against OGD/R-induced injury. Interestingly, miR-302b-3p was shown to target and modulate murine fibroblast growth factor 15 (FGF15). Moreover, our results showed that miR-302b-3p down-regulation contributed to the promotion of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE)-mediated antioxidant signaling associated with the inactivation of glycogen synthase kinase-3 beta. However, the knockdown of FGF15 significantly reversed the miR-302b-3p inhibition-mediated protective effect in OGD/ R-treated neurons. Overall, these results demonstrated that miR-302b-3p inhibition confers a neuroprotective effect in OGD/R-treated neurons by up-regulating Nrf2/ARE antioxidant signaling via targeting FGF15, providing a novel target for neuroprotection in cerebral ischaemia/reperfusion injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据