4.8 Review

Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies

期刊

CHEMICAL REVIEWS
卷 120, 期 2, 页码 919-985

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.9b00201

关键词

-

资金

  1. Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization (NEDO) [16H02417]
  2. Japan Society for the Promotion of Science

向作者/读者索取更多资源

Solar-driven water splitting provides a leading approach to store the abundant yet intermittent solar energy and produce hydrogen as a clean and sustainable energy carrier. A straightforward route to light-driven water splitting is to apply self-supported particulate photocatalysts, which is expected to allow solar hydrogen to be competitive with fossil-fuel-derived hydrogen on a levelized cost basis. More importantly, the powder-based systems can lend themselves to making functional panels on a large scale while retaining the intrinsic activity of the photocatalyst. However, all attempts to generate hydrogen via powder-based solar water-splitting systems to date have unfortunately fallen short of the efficiency values required for practical applications. Photocatalysis on photocatalyst particles involves three sequential steps: (i) absorption of photons with higher energies than the bandgap of the photocatalysts, leading to the excitation of electron-hole pairs in the particles, (ii) charge separation and migration of these photoexcited carriers, and (iii) surface chemical reactions based on these carriers. In this review, we focus on the challenges of each step and summarize material design strategies to overcome the obstacles and limitations. This review illustrates that it is possible to employ the fundamental principles underlying photosynthesis and the tools of chemical and materials science to design and prepare photocatalysts for overall water splitting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据