4.6 Article

A numerical investigation into the effect of angular particle shape on blast furnace burden topography and percolation using a GPU solved discrete element model

期刊

CHEMICAL ENGINEERING SCIENCE
卷 204, 期 -, 页码 9-26

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2019.03.077

关键词

DEM; Blast furnace charging; Particle shape; GPU; Large scale

资金

  1. MARIE Sklodowska-CURIE Individual Fellowships with acronym DECRON through the People Programme (MARIE Sklodowska-CURIE Actions) of the European Union's H2020 under REA [747963]
  2. National Research Foundation (NRF) of South Africa
  3. Marie Curie Actions (MSCA) [747963] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

In blast furnaces, burden topography and packing density affect the stability of the burden, permeability of gas flow as well as the heat transfer efficiency. A fundamental understanding of the influence and interaction of coke and ore particles on the burden topography and packing density is therefore essential, in particular, the influence of particle shape polydispersity and particle size polydispersity. In this paper we analyze the effect of particle shape and size polydispersity on the coke and ore charge distribution inside a bell-less blast furnace using the discrete element method (DEM). We first validate experimentally the polyhedral particle model with a simplified lab-scale charging experiment. A comparative study between spheres, with rolling friction to account for shape, and polyhedra is conducted for shape and size polydisperse particle systems. It was found that shape polydispersity mainly influenced the topography of the burden, whereas the size polydispersity mainly influenced the inter-layer percolation, i.e. localized particle diffusion, hence the local spatial packing density. The differences between the spherical particle models and polyhedral particle models on the burden topography are also quantitatively and qualitatively presented, especially on the role of particle shape on the push-up of coke in the centre. This study demonstrates that modelling particle shape effects using spheres with rolling friction is insufficient to fully describe the complex behaviour of shaped particles in a blast furnace, as the particle shape has a noteworthy influence on the burden characteristics. Crown Copyright (C) 2019 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据