4.7 Article

Tuneable functionalities in layered double hydroxide catalysts for thermochemical conversion of biomass-derived glucose to fructose

期刊

CHEMICAL ENGINEERING JOURNAL
卷 383, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122914

关键词

Sustainable biorefinery; Value-added chemicals; Waste valorisation/recycling; Green solvents; Solid base catalysts; Hydrotalcite-like clay

资金

  1. Hong Kong Research Grants Council [PolyU 15217818]
  2. Hong Kong Environment and Conservation Fund [K-ZB78]
  3. National Natural Science Foundation of China [21706224]
  4. City University of Hong Kong [7200524]

向作者/读者索取更多资源

Layered double hydroxides (LDHs) with varying crystallite sizes (2.6-43 nm), layer numbers (3-70), specific surface area (18-455 m(2) g(-1)), pore volume (0.025-1.6 mL g(-1)), and functional groups were synthesised via conventional urea hydrolysis and co-precipitation methods and aqueous miscible organic solvent (AMOST) treatment. They were evaluated as the solid base catalysts for the thermochemical isomerisation of biomass-derived glucose to fructose with the aim of establishing the structure-performance relationships for carbon-efficient biorefinery. The results showed that the fructose yield increased with increasing crystallite size of LDHs due to the enhanced exposure of active sites. However, excessive increase in the structural accessibility could be detrimental because high hydrophilicity potentially resulted in water clusters surrounding the active sites and hindering their interaction with glucose. Nano-sized particles in small quantity that were visually indiscernible may partially account for the catalytic activity. The kinetics test suggested that the conversion of glucose to intermediates may act as the rate-determining step when the reaction temperature increased. The activation energy for the LDH-catalysed glucose conversion was estimated to be 52.8 kJ mol(-1). The highest fructose yield of 25 mol% was achieved at 120 degrees C for 5 min in water. The recycling test suggested that the catalytic performance became stable after the second run, possibly due to the formation of a passive layer. This study elucidates the structure-controlled functionalities of the LDH catalysts to serve a base-catalysed biorefinery reaction, and provides mechanistic insights into the active components and the catalyst transformation during thermo-chemical biomass conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据