4.7 Article

Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles

期刊

CHEMICAL ENGINEERING JOURNAL
卷 369, 期 -, 页码 1150-1160

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.03.150

关键词

Epoxy nanocomposites; Thermal conductivity; Interfacial thermal resistance; Boron nitride nanosheets; Mechanical properties

资金

  1. National Natural Science Foundation of China [51473047, 51803052, 51210004]
  2. National Key Research and Development Program of China [2016YFB0302405]

向作者/读者索取更多资源

Polymer-based thermal conductive composites (PTCs) with good thermal and mechanical properties are highly appreciated in the thermal management of modern electronic devices. However, the heat transfer property of particle-filled PTCs is severely limited by the thermal resistance at both filler-matrix and filler-filler interfaces. Intensive efforts have been taken to enhance the filler-matrix interface, however, the effect of filler-filler thermal contact resistance on the heat transfer properties of PTCs is still not very clear. In this work, continuous thermal conductive networks with good filler-filler interface contact are formed in epoxy composites via the in-situ sintering of silver nanoparticles on the surface of boron nitride nanosheets (BNNS). In this composites, homogeneously dispersed and well exfoliated BN nanosheets are bridged to each other via the sintered AgNPs located at the BNNS and a 3D boron nitride nanosheets network is formed with solid Ag junctions lying in between. After thermal sintering process, the thermal conductivity of EP/BNNS@AgNPs composite with the 3D boron nitride nanosheets network increase from 0.95 W/m.K to 1.13 W/m.K at the filler loading of 20 wt%, which indicates that merged AgNPs are used as thermal transport junctions to reduce the thermal contact resistance within 3D BNNS networks. The present strategy provides an effective route for developing high-performance PTCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据