4.7 Article

Bio-inspired underwater superoleophobic PVDF membranes for highly-efficient simultaneous removal of insoluble emulsified oils and soluble anionic dyes

期刊

CHEMICAL ENGINEERING JOURNAL
卷 369, 期 -, 页码 576-587

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.03.089

关键词

Anti-oil fouling; Dye adsorption; Polyvinylidene fluoride; Chitosan; Mussel-inspiration

资金

  1. National Natural Science Foundation of China [51703113, 21776249, 21676248]
  2. Shandong Provincial Natural Science Foundation [ZR2017BEM039]
  3. China Postdoctoral Science Foundation [2018M630763]
  4. Zhejiang Provincial Major Project of Science Technology [2014C13SAA10006]

向作者/读者索取更多资源

Exploiting high-performance polymer membranes, which can simultaneously remove of both highly-emulsified oils and water-soluble contaminants such as dyes, is urgently required, yet remains an arduous challenge due to the critical restrictions of single functionality and severe membrane fouling. Herein, a superior superwettable polyvinylidene fluoride/chitosan/dopamine (PVDF/CS&DA) membrane was developed via a facile one-step codeposition strategy. With the catalysis of tyrosinase, DA-based chemical modification was conducted in a weak acid environment (pH 5.8-6.0) rather than conventional alkaline environment (i.e., pH 8.5), providing an intriguing alternative route towards mussel-inspired functional modification. Owing to the synergistic effect of the hydrophilic components and nano-structure roughness, the resultant membrane exhibited remarkable underwater superoleophobicity (oil CA of 1, 2-dichloroethane, 163.9 degrees) and oil-repellency properties. Accordingly, benefiting from the superwettability features, the composite membrane achieved superior separation (an enhanced permeation flux of 201.3 L m(-2) h(-1) and a high separation efficiency of up to 99.7%) and anti-fouling performances in separating oil-in-water emulsions. More interestingly, this membrane displayed an excellent in situ adsorption capability for water-soluble anionic dyes, showing a fairly high adsorption efficiency (96.8% and 92.7% for methyl blue and orange G, respectively) after merely one-time rapid filtration and a robust recyclability. Therefore, the resulting membrane integrating high-efficiency emulsions separation and synchronous dyes removal capabilities holds a great prospect for sophisticated oily wastewater decontamination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据