4.7 Article

A novel chitosan-based nanomedicine for multi-drug resistant breast cancer therapy

期刊

CHEMICAL ENGINEERING JOURNAL
卷 369, 期 -, 页码 134-149

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.02.201

关键词

Chitosan-based nanocarrier; Doxorubicin; Oleanolic acid; Codelivery; Chemosensitizing

资金

  1. Science and Technology Commission of Shanghai Municipality [16410723700]
  2. Biomedical Textile Materials 111 Project of the Ministry of Education of China [B07024]
  3. UK China Joint Laboratory for Therapeutic Textiles (based at Donghua University)
  4. Yunnan Provincial Department of Science and Technology-Kunming Medical University Joint Project on Applied Basic Research [2018FE001 (-162)]
  5. National Natural Science Foundation of China [81460647]

向作者/读者索取更多资源

In this study, a novel chitosan-based (CS) nanocarrier was developed for doxorubicin (DOX) and oleanolic acid (OA) codelivery. CS was first functionalized with folic acid to allow selective uptake by cancer cells, and then subsequently with OA. The resultant copolymer self-assembled into nanoparticles (NPs) upon addition to water. These FA-CS-g-OA@DOX nanoparticles (NPs) had appropriate size (180 nm) and size distribution (PDI < 0.45) for tumor therapy, as well as a high drug-loading efficiency (15.6% w/w DOX; 5.1% w/w OA) and pH-responsive release properties. In breast cancer MDA-MB-231 cells, more efficient uptake of FA-CS-g-OA@DOX NPs than of free DOX was observed by confocal laser scanning microscopy and flow cytometry. The in vitro cytotoxicity of FA-CS-g-OA@DOX NPs against MDA-MB-231 cells was higher than with free DOX and free OA, while the NPs were less harmful to healthy HUVEC cells. In vivo pharmacokinetic studies showed that FA-CS-g-OA@DOX NPs had a much longer circulation time than free DOX, while biodistribution results revealed that FA-CS-g-OA@DOX could actively target a MDA-MB-231 xenograft tumor in mice. The NPs are found to have apoptosis-enhancing and anti-proliferative capacities in vivo. The presence of OA in the formulation both sensitizes cancer cells to DOX and mitigates DOX-induced damage to healthy tissues. The FA-CS-g-OA@DOX NPs generated in this work hence have great potential for the treatment of multi-drug resistant breast cancers, and further offer a platform to target other cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据