4.7 Article

Prediction of carbofuran degradation based on the hydroxyl radicals generation using the FeIII impregnated N doped-TiO2/H2O2/visible LED photo-Fenton-like process

期刊

CHEMICAL ENGINEERING JOURNAL
卷 382, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122930

关键词

Carbofuran; Visible LED; Impregnation; Fe-N doped TiO2; Hydroxyl radicals; Kinetic modeling

资金

  1. Hong Kong Polytechnic University

向作者/读者索取更多资源

Hydroxyl radicals (OH) are the dominant reactive species during most photocatalytic reactions. Therefore, OH generation as an index could be beneficial in comparing the obtained results in different experimental setup designs, thereby providing new insights for understanding the photocatalytic mechanism. Heterogeneous photo-Fenton like processes are one of the most effective technologies for degradation of organic pollutants through (OH)-O-center dot production. Nevertheless, kinetic models that take into account the dependence of the contaminant degradation on (OH)-O-center dot generation under homogeneous oxidant supply, are still limited in such processes. In this paper, a photo-Fenton like reagent (FeIII impregnated N-doped TiO2 (FeNT)/H2O2) involving both heterogeneous and homogeneous phases was employed for carbofuran (CBF) degradation, frequently used pesticide in many developing countries from the carbamate group. In addition, a commercial visible LED lamp (Vis LED) with high power output was utilized as an innovative and efficient visible light source to simulate solar energy. Accordingly, a new kinetic model was proposed to predict CBF degradation in the FeNT/H2O2/Vis LED process under high Vis LED light intensities based on intrinsic reaction parameters, including the Vis LED light intensity, FeNT dosage, initial H2O2 concentration, and OH generation. The developed model was verified and validated successfully under various reaction conditions. However, a standard error ranging from 3% to 15% was observed at extreme cases such as high [FeNT] and I or low [H2O2](0) when comparing model predictions and experimental results. This is due to the use of averaged conditions to forecast the rate constants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据