4.7 Article

Role of extracellular polymeric substance in adsorption of quinolone antibiotics by microbial cells in excess sludge

期刊

CHEMICAL ENGINEERING JOURNAL
卷 370, 期 -, 页码 684-694

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.03.230

关键词

Excess sludge; Quinolone antibiotic; Adsorption; Extracellular polymeric substance; Metal ion

资金

  1. China Postdoctoral Science Foundation [2015M580968]
  2. Beijing Postdoctoral Research Foundation
  3. Beijing Outstanding Talents Training, Science and Technology Programs of the Beijing Municipal Education Commission [SQKM201710016001]
  4. Beijing Advanced Innovation Center for Future Urban Design

向作者/读者索取更多资源

Traditional wastewater treatment plants cannot completely remove trace pharmaceutical and personal care products. In particular, quinolone antibiotics are mainly adsorbed on microbial cell surfaces in excess sludge and are released into the water environment during agricultural supplementation, mainly due to the exfoliation of extracellular polymeric substances (EPS) caused by changes in environmental conditions. Here, the occurrence of seven typical quinolone antibiotics from three generations in excess sludge was investigated at trace concentrations using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). EPS facilitated adsorption independent of pH and quinolone antibiotic type, and the solid-liquid distribution coefficient decreased markedly as pH increased (pH 5-9, range of municipal wastewater). Metal ions bound in EPS were predominantly responsible for the adsorption of antibiotics in sludge, rather than the macroscopic size of the sludge floc. pH affected patterns of quinolone antibiotics, the zeta potential of sludge floc, and the contents of metal ions contained in sludge. The adsorption capacity of antibiotics first increased and then decreased with increasing pH in the range of pH 3-11, reaching a maximum (20,506, 14,458, 10,689, 22,854, 20,302, 8494, and 29,547 L/kg for CIP, ENR, LOM, MOX, NOR, OFL, and SAR, respectively) near pH 5, at which the cationic bridging of Ca2+ and Mg2+ bound in EPS played a major role owing to their larger ion radius and higher contents in excess sludge. Due to high surface heterogeneity of sludge, the Freundlich model was more suitable than the Langmuir model for describing the adsorption behavior of quinolone antibiotics. These results provide further insight into the release of quinolone antibiotics adsorbed in excess sludge, with potential implications for the agricultural use of sludge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据