4.2 Article

Shear Stress in Bone Marrow has a Dose Dependent Effect on cFos Gene Expression in In Situ Culture

期刊

CELLULAR AND MOLECULAR BIOENGINEERING
卷 12, 期 6, 页码 559-568

出版社

SPRINGER
DOI: 10.1007/s12195-019-00594-z

关键词

Mechanobiology; Bone adaptation; Trabecular bone; Gene regulation; Computational modeling

资金

  1. National Science Foundation [CMMI-1453467, CMMI-1100207]
  2. Walther Cancer Foundation through a Notre Dame Harper Cancer Research Institute Interdisciplinary Interface Training Program fellowship
  3. Notre Dame Advanced Diagnostics and Therapeutics Institute's Leiva Graduate Fellowship in Precision Medicine

向作者/读者索取更多资源

Introduction Mechanical stimulation of bone is necessary to maintain its mass and architecture. Osteocytes within the mineralized matrix are sensors of mechanical deformation of the hard tissue, and communicate with cells in the marrow to regulate bone remodeling. However, marrow cells are also subjected to mechanical stress during whole bone loading, and may contribute to mechanically regulated bone physiology. Previous results from our laboratory suggest that mechanotransduction in marrow cells is sufficient to cause bone formation in the absence of osteocyte signaling. In this study, we investigated whether bone formation and altered marrow cell gene expression response to stimulation was dependent on the shear stress imparted on the marrow by our loading regime. Methods Porcine trabecular bone explants were cultured in an in situ bioreactor for 5 or 28 days with stimulation twice daily. Gene expression and bone formation were quantified and compared to unstimulated controls. Correlation was used to assess the dependence on shear stress imparted by the loading regime calculated using computational fluid dynamics models. Results Vibratory stimulation resulted in a higher trabecular bone formation rate (p = 0.01) and a greater increase in bone volume fraction (p = 0.02) in comparison to control explants. Marrow cell expression of cFos increased with the calculated marrow shear stress in a dose-dependent manner (p = 0.002). Conclusions The results suggest that the shear stress due to interactions between marrow cells induces a mechanobiological response. Identification of marrow cell mechanotransduction pathways is essential to understand healthy and pathological bone adaptation and remodeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据