4.8 Article

Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide

期刊

CARBON
卷 149, 期 -, 页码 722-732

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2019.04.109

关键词

Graphene oxide; Electrochemical reduction; Reduced graphene oxide; Defects

资金

  1. CONACYT [25840]
  2. CONACYT (project SEP-CONACyT) [169634]
  3. European Research Council [648161]
  4. European Research Council (ERC) [648161] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The electrochemical reduction of GO was investigated in aqueous, at both acid and basic pH, and organic media, to identify the possible role of protons (H+) in the reduction mechanism of this material. The obtained rGO films were characterized by FTIR, electrochemical methods, Raman and XPS spectroscopy. Data showed that the reduction was more efficient in acid and basic media due to the presence of protons and the capacity of water that works as a proton donor, resulting in C/O ratios of 3.8 and 7.8, respectively. Mostly hydroxyl, epoxide and carbonyl moieties were removed. In a proton-free organic electrolyte, a C/O ratio of 1.8 was obtained for most of the samples; nevertheless, the graphitic carbon sp(2) domains were restored to a large extent in the absence of H+. The characterization of the material showed that the presence of protons, during the electrochemical reduction, caused hydrogenation reactions, which targeted the graphitic domains in rGO and resulted in the loss of sp(2) hybridization. The presence of such defects modified the electrochemical properties of the rGO films, where, despite of exhibiting higher C/O ratio, the films reduced in aqueous electrolytes displayed lower electron transfer (e.g. ferrocyanide redox-probe) than those reduced in organic electrolyte. (C) 2019 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据