4.3 Review

Recovering Brain Dynamics During Concurrent tACS-M/EEG: An Overview of Analysis Approaches and Their Methodological and Interpretational Pitfalls

期刊

BRAIN TOPOGRAPHY
卷 32, 期 6, 页码 1013-1019

出版社

SPRINGER
DOI: 10.1007/s10548-019-00727-7

关键词

Transcranial alternating current stimulation (tACS); Brain oscillations; tACS-M; EEG integration; Online effects; MEG; EEG

向作者/读者索取更多资源

Transcranial alternating current stimulation (tACS) is increasingly used as a tool to non-invasively modulate brain oscillations in a frequency specific manner. A growing body of neuroscience research utilizes tACS to probe causal relationships between neuronal oscillations and cognitive processes or explore its capability of restoring dysfunctional brain oscillations implicated in various neurological and psychiatric disease. However, the underlying mechanisms of action are yet poorly understood. Due to a massive electromagnetic artifact, overlapping with the frequency of interest, direct insights to effects during stimulation from electrophysiological signals (i.e. EEG/MEG) are methodologically challenging. In the current review, we provide an overview of analysis approaches to recover brain signals in M/EEG during tACS, detailing their underlying concepts as well as limitations and methodological and interpretational pitfalls. While different analysis strategies can achieve strong attenuation of the tACS artifact in M/EEG signals, a compete removal of it is not feasible so far. However, we argue that with a combination of careful experimental designs, robust outcome measures and appropriate control analyses, valid and important insights to online effects of tACS can be revealed, enriching our understanding of its basic underlying mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据