4.5 Article

Bioleaching of silicon in electrolytic manganese residue using single and mixed silicate bacteria

期刊

BIOPROCESS AND BIOSYSTEMS ENGINEERING
卷 42, 期 11, 页码 1819-1828

出版社

SPRINGER
DOI: 10.1007/s00449-019-02178-7

关键词

Electrolytic manganese residue; Silicate bacteria; Bioleaching; Desilication; Optimization

资金

  1. National Natural Science Foundation of China [51804354]
  2. Scientific Special of Central Higher Education Institutions [CZD19006, CZD18010]

向作者/读者索取更多资源

Electrolytic manganese residue (EMR) is a type of industrial solid waste with a high silicon content. The silicon in EMR can be used as an essential nutrient for plant growth, but most of the silicon is found in silicate minerals with very low water solubility, that is, it is inactive silicon and cannot be absorbed and used by plants directly. Thus, developing a highly effective and environmentally friendly process for the activation of silicon in EMR is important both for reusing solid waste and environmental sustainability. The aim of this study was to investigate the desilication of EMR using cultures of Paenibacillus mucilaginosus (PM) and Bacillus circulans (BC). The results showed that the two types of silicate bacteria and a mixed strain of them were all able to extract silicon from EMR with a high efficiency, but the desilication performance of the mixed PM and BC was the best. Fourier transform infrared spectroscopy indicated that silicate bacteria can induce a suitable micro-environment near the EMR particles and release Si into the solution through their metabolism. X-ray diffraction analysis confirmed that layered crystal minerals, such as muscovite and diopside, were more likely to be destroyed by the bacterial action than quartz, which has a frame structure. Scanning electron microscopy-energy dispersive spectrometry proved that the silicate structures were destroyed and that Si in the residue was decreased, indicating the dissolution of silicon under the action of these microorganisms. This study suggests that bioleaching may be a promising method for the activation of silicon in EMR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据