4.4 Article

Molecular dynamics simulations of mechanical stress on oxidized membranes

期刊

BIOPHYSICAL CHEMISTRY
卷 254, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.bpc.2019.106266

关键词

Lipid oxidation; Membrane rupture; Pore formation; Domain interfaces

资金

  1. Sao Paulo Research Foundation (FAPESP) [2012/50680-5]
  2. National Counsel of Technological and Scientific Development (CNPq) [459270/2014-1]
  3. UFABC

向作者/读者索取更多资源

Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using non-equilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with -OH and -OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with =O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据