4.7 Article

EGR1 promotes the cartilage degeneration and hypertrophy by activating the Kruppel-like factor 5 and β-catenin signaling

期刊

出版社

ELSEVIER
DOI: 10.1016/j.bbadis.2019.06.010

关键词

Osteoarthritis; Chondrocyte; EGR1; KLF5

资金

  1. National Nature Science Fund of China [81874015, 81873985]
  2. Natural Science Fund of Zhejiang Province [LY16H060004]

向作者/读者索取更多资源

Osteoarthritis is one of the most common orthopedic diseases in elderly people who have lost their mobility. In this study, we observed abnormally high EGR1 expression in the articular cartilage of patients with osteoarthritis. We also found significantly high EGR1 expression in the articular cartilage of mice with destabilized medial meniscus (DMM)-induced osteoarthritis and 20-month-old mice. In vitro experiments indicated that IL-1 beta could significantly enhance EGR1 expression in primary mouse chondrocytes. EGR1 over-expression in chondrocytes using adenovirus could inhibit COl2A1 expression and enhance MMP9 and MMP13 expression. And silencing EGR1, using RNAi, had the opposite effects. Moreover, EGR1 over-expression accelerated chondrocyte hypertrophy in vitro, and EGR1 knockdown reversed this effect. We then explored the underlying mechanism. EGR1 over-expression increased Kruppel-Like Factor 5 (KLF5) protein level without influencing its synthesis. Enhanced EGR1 expression induced its integration with KLF5, leading to suppressed ubiquitination of KLF5. Moreover, EGR1 prompted beta-catenin nuclear transportation to control chondrocyte hypertrophy. Ectopic expression of EGR1 in articular cartilage aggravated the degradation of the cartilage matrix in vivo. The EGR1 inhibitor, ML264, protected chondrocytes from IL-1 beta-mediated cartilage matrix degradation in vitro and DMM-induced osteoarthritis in vivo. Above all, we demonstrate the effect and mechanisms of EGR1 on osteoarthritis and provide evidence that the ML264 might be a potential drug for treating osteoarthritis in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据