4.4 Article Proceedings Paper

Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell

期刊

ARTIFICIAL LIFE
卷 22, 期 2, 页码 185-195

出版社

MIT PRESS
DOI: 10.1162/ARTL_a_00198

关键词

Cell-free transcription-translation; synthetic biology; minimal cell; encapsulation; gene circuits; cell-free metabolism

向作者/读者索取更多资源

Cell-free expression is a technology used to synthesize minimal biological cells from natural molecular components. We have developed a versatile and powerful all-E. coli cell-free transcription-translation system energized by a robust metabolism, with the far objective of constructing a synthetic cell capable of self-reproduction. Inorganic phosphate (iP), a byproduct of protein synthesis, is recycled through polysugar catabolism to regenerate ATP (adenosine triphosphate) and thus supports long-lived and highly efficient protein synthesis in vitro. This cell-free TX-TL system is encapsulated into cell-sized unilamellar liposomes to express synthetic DNA programs. In this work, we study the compartmentalization of cell-free TX-TL reactions, one of the aspects of minimal cell module integration. We analyze the signals of various liposome populations by fluorescence microscopy for one and for two reporter genes, and for an inducible genetic circuit. We show that small nutrient molecules and proteins are encapsulated uniformly in the liposomes with small fluctuations. However, cell-free expression displays large fluctuations in signals among the same population, which are due to heterogeneous encapsulation of the DNA template. Consequently, the correlations of gene expression with the compartment dimension are difficult to predict accurately. Larger vesicles can have either low or high protein yields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据