4.7 Article Proceedings Paper

Koopman operator-based model reduction for switched-system control of PDEs

期刊

AUTOMATICA
卷 106, 期 -, 页码 184-191

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.automatica.2019.05.016

关键词

Koopman operator; Dynamic mode decomposition; Reduced order modeling; Optimal control; Switched systems

资金

  1. DFG Priority Programme 1962 Non-smooth and Complementarity-based Distributed Parameter Systems

向作者/读者索取更多资源

We present a new framework for optimal and feedback control of PDEs using Koopman operator based reduced order models (K-ROMs). The Koopman operator is a linear but infinite-dimensional operator which describes the dynamics of observables. A numerical approximation of the Koopman operator therefore yields a linear system for the observation of an autonomous dynamical system. In our approach, by introducing a finite number of constant controls, the dynamic control system is transformed into a set of autonomous systems and the corresponding optimal control problem into a switching time optimization problem. This allows us to replace each of these systems by a K-ROM which can be solved orders of magnitude faster. By this approach, a nonlinear infinite-dimensional control problem is transformed into a low-dimensional linear problem. Using a recent convergence result for the numerical approximation via Extended Dynamic Mode Decomposition (EDMD), we show that the value of the K-ROM based objective function converges in measure to the value of the full objective function. To illustrate the results, we consider the 1D Burgers equation and the 2D Navier-Stokes equations. The numerical experiments show remarkable performance concerning both solution times and accuracy. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据