4.2 Article

A new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR-GWO)

期刊

ARABIAN JOURNAL OF GEOSCIENCES
卷 12, 期 17, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s12517-019-4697-1

关键词

Evolutionary algorithms; Grey wolf optimization; Streamflow forecasting; Support vector regression; Wavelet transform

向作者/读者索取更多资源

Forecasting daily and monthly streamflows is necessary for short- and long-term water resources management, particularly in extreme cases, e.g., flood and drought. Accurate models are needed to plan and manage water resources in watersheds. Recently, support vector regression (SVR) shows the ability to handle the hydrological forecasting issues, but the accuracy of SVR depends on the appropriate choice of parameters and selection of proper inputs. A new meta-heuristic algorithm called grey wolf optimizer (GWO) is used in the current research in order to improve SVR accuracy in forecasting monthly streamflow. The proposed approach is compared with other evolutionary methods, particle swarm optimization, shuffled complex evolution, and multi-verse optimization, that are employed in tuning SVR parameters. Furthermore, the proposed methods were also combined with wavelet transform and tested using monthly streamflow data from two gauging stations, Ain Bedra and Fermatou, in Algeria. To assess the performance of the developed models, Nash-Sutcliffe efficiency (NSE), correlation coefficient, root mean squared error (RMSE), and mean absolute error (MAE) were used. The obtained results indicate that multi-linear regression provides appropriate input variables to SVR models. According to all of the performance measures used, hybrid models exhibit better performances, in monthly streamflow prediction, compared with single versions. For example, for the Ain Bedra station, the NSEcriterion and the correlation coefficient values increased considerably from 27.36% and 0.5405, for the single models, to 95.72% and 0.9786, for the hybrid models. A great decrease has also been obtained for the RMSE and MAE values, which decreased from 0.1562 m(3)/s and 0.1244 m(3)/s to 0.6433m(3)/s and 0.3047 m(3)/s. In addition, the new GWO algorithm outperformed the other algorithms in terms of both forecasting accuracy and convergence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据