4.8 Article

Sensitizing Ru(II) polyimine redox center with strong light-harvesting coumarin antennas to mimic energy flow of biological model for efficient hydrogen evolution

期刊

APPLIED CATALYSIS B-ENVIRONMENTAL
卷 253, 期 -, 页码 105-110

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2019.04.039

关键词

Hydrogen evolution; Ru-based photosensitizer; Strong visible light absorption; Energy transfer

资金

  1. National Key R&D Program of China [2017YFA0700104]
  2. National Natural Science Foundation of China [21703155, 21722104, 21671032, 21401095]
  3. Natural Science Foundation of Tianjin City of China [18JCQNJC76500, 18JCJQJC47700, 17JCQNJC05100]
  4. Natural Science Foundation for Distinguished Young Scholars of Tianjin of China [17JCJQJC43800]

向作者/读者索取更多资源

In natural photosynthetic system, sunlight is trapped by strongly absorbing chromophores, followed by excitation energy transfer to redox centers to initiate redox reactions. This inspired chemists to decorate redox centers with antenna molecules to mimick energy flow of biological model. Herein, three strong light-harvesting coumarin antennas were firstly decorated to a Ru(II) complex, resulting in a tetrads (Ru-3) with high molar extinction coefficient of 144000 M-1 cm(-1) at 481 nm, 13-fold higher than that of typical Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine, Ru-1). Photocatalytic hydrogen evolution activity of Ru-3 is over 27 times higher than that of Ru-1 under weak visible-light condition, while achieving a turnover number (TON) of 5510 under 175 W Xenon lamp irradiation. Steady and transient spectra confirm that the strong absorbing coumarins are responsible for capturing visible light and subsequently funneling the excitation energy to Ru redox center, which can efficiently promote the electron transfer from N, N-dimethyl-p-toluidine (DMT) to excited redox center, as well as the subsequent photocatalytic hydrogen evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据