4.7 Review Book Chapter

Patterns in Wall-Bounded Shear Flows

期刊

ANNUAL REVIEW OF FLUID MECHANICS, VOL 52
卷 52, 期 -, 页码 343-367

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-fluid-010719-060221

关键词

transition to turbulence; wall-bounded shear flows; turbulent-laminar pattern; directed percolation

资金

  1. National Science Foundation [NSF PHY-1748958]
  2. CNRS/Royal Society grant
  3. Agence Nationale de la Recherche (ANR) through the TRANSFLOW project
  4. [1119]
  5. [i20070211119]
  6. [i20080211119]
  7. [i2009021119]
  8. [i2010021119]
  9. [i2011021119]
  10. [i2012021119]
  11. [i20132a1119]
  12. [i20142a1119]
  13. [i20152a1119]
  14. [i20162a1119]
  15. [A0022A01119]

向作者/读者索取更多资源

Experiments and numerical simulations have shown that turbulence in transitional wall-bounded shear flows frequently takes the form of long oblique bands if the domains are sufficiently large to accommodate them. These turbulent bands have been observed in plane Couette flow, plane Poiseuille flow, counter-rotating Taylor-Couette flow, torsional Couette flow, and annular pipe flow. At their upper Reynolds number threshold, laminar regions carve out gaps in otherwise uniform turbulence, ultimately forming regular turbulent-laminar patterns with a large spatial wavelength. At the lower threshold, isolated turbulent bands sparsely populate otherwise laminar domains, and complete laminarization takes place via their disappearance. We review results for plane Couette flow, plane Poiseuille flow, and free-slip Waleffe flow, focusing on thresholds, wavelengths, and mean flows, with many of the results coming from numerical simulations in tilted rectangular domains that form the minimal flow unit for the turbulent-laminar bands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据