4.5 Article

Scaffold Free Microtissue Formation for Enhanced Cartilage Repair

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 48, 期 1, 页码 298-311

出版社

SPRINGER
DOI: 10.1007/s10439-019-02348-4

关键词

Cartilage; Spheroids; 3D bioprinting; Fibrocartilage; Microtissue; Chondrocyte

向作者/读者索取更多资源

Given the low self-healing capacity of fibrocartilage and hyaline cartilage, tissue engineering holds great promise for the development of new regenerative therapies. However, dedifferentiation of cartilage cells during expansion leads to fibrous tissue instead of cartilage. The purpose of our study was to generate 3D microtissues, spheroids, mimicking the characteristics of native fibrocartilage or articular cartilage to use as modular units for implantation in meniscal and articular cartilage lesions, respectively, within the knee joint. A set of parameters was assessed to create spheroids with a geometry compatible with 3D bioprinting for the creation of a biomimetic cartilage construct. Fibrochondrocytes (FC) and articular chondrocytes (AC) spheroids were created using a high-throughput microwell system. Spheroid morphology, viability, proliferation and extracellular matrix were extensively screened. After 2D expansion, FC and AC dedifferentiated, resulting in a loss of cartilage specific extracellular matrix proteins. Spheroid formation did not result in FC redifferentiation, but did lead to redifferentiation of AC, resulting in microtissues displaying collagen II, aggrecan and glycosaminoglycans. This study demonstrates 3D cartilage mimics that could have a potential application in the next generation of Autologous Chondrocyte Implantation procedures. Moreover, spheroids can be used as building blocks to create cartilage constructs by bioprinting in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据