4.8 Article

Ultrasensitive Determination of Rare Modified Cytosines Based on Novel Hydrazine Labeling Reagents

期刊

ANALYTICAL CHEMISTRY
卷 91, 期 20, 页码 13047-13053

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b03227

关键词

-

资金

  1. National Natural Science Foundation of China [21675004, 21575005, 21775006]

向作者/读者索取更多资源

Modified cytosines are important epigenetic marks that exert critical influences in a variety of cellular processes in living organisms. However, biological functions of rare modified cytosines, especially certain functions of 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), are still unclear due to the extremely low abundance in biological samples. In this work, a series of novel hydrazine-based reagents, which held a hydrazine group as the reaction group, a hydrophobic triazine group, and two easily charged tertiary amine groups with different alkyl chains for adjusting the hydrophobicity of the labeling reagents, were first explored to label rare modified cytosines such as 5fC and 5caC. The derivatization reaction between 5fC and the labeling reagents was extremely fast, and more than 99% derivatization efficiency could be achieved only by vortexing without additional reaction time. The detection sensitivity of 5fC increased with the increase of the hydrophobicity of the labeling reagents, the best of which was dramatically enhanced by 125-fold. The limit of detection was as low as 10 amol, realizing the most sensitive genome-wide overall quantification for 5fC. Moreover, the labeling reagents were also successfully applied for the detection of 5caC with 100-fold improvement of sensitivity. With this method, we achieved the simultaneous detection of 5fC and 5caC in different mammalian tissues using only about 600 ng of genomic DNA, which was less than one-tenth of the sample consumption for other reported methods, providing an opportunity to monitor 5fC and 5caC in precious samples and biology processes that could not be investigated before.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据