4.7 Article

Fourier transform infrared spectroscopic imaging of colon tissues: evaluating the significance of amide I and C-H stretching bands in diagnostic applications with machine learning

期刊

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
卷 411, 期 26, 页码 6969-6981

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-019-02069-6

关键词

Fourier transform infrared spectroscopic imaging; Colon polyps and cancer; Correcting lens approach; Machine learning; K-means clustering; Random forest supervised classification

向作者/读者索取更多资源

Fourier transform infrared (FTIR) spectroscopic imaging of colon biopsy tissues in transmission combined with machine learning for the classification of different stages of colon malignancy was carried out in this study. Two different approaches, an optical and a computational one, were applied for the elimination of the scattering background during the measurements and compared with the results of the machine learning model without correction for the scattering. Several different data processing pathways were implemented in order to obtain a high accuracy of the prediction model. This study demonstrates, for the first time, that C-H stretching and amide I bands are of little to no significance in the classification of the colon malignancy, based on the Gini importance values by random forest (RF). The best prediction outcome is found when supervised RF classification was carried out in the fingerprint region of the spectral data between 1500 and 1000 cm(-1) (excluding the contribution of amide I and II bands). An overall prediction accuracy higher than 90% is achieved through the RF. The results also show that dysplastic and hyperplastic tissues are well distinguished. This leads to the insight that the important differences between hyperplastic and dysplastic colon tissues lie within the fingerprint region of FTIR spectra. In this study, computational correction performed better than optical correction, but the findings show that the disease states of colon biopsies can be distinguished effectively without elimination of Mie scattering effect. Graphical abstract

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据