4.7 Article

Unsteady aerodynamic modeling and control of pusher and tilt-rotor quadplane configurations

期刊

AEROSPACE SCIENCE AND TECHNOLOGY
卷 94, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2019.105421

关键词

Unmanned aerial vehicle; Tilt-rotor; Pusher; Quadplane; Unsteady aerodynamics; Transition flight control

资金

  1. National Research Foundation-Prime Minister's office, Republic of Singapore
  2. Aarhus University, Denmark [28173]

向作者/读者索取更多资源

A nonlinear unsteady aerodynamics model is coupled with a three degree of freedom quadplane to control the forward and backward transition between hover and steady level flight. The unsteady lift and drag forces are modeled using a lumped vortex model for flat plates. Two variants for the quadplane are considered: (i) a pusher and (ii) a tilt-rotor configuration in the absence of control surfaces to assess the controllability for altitude, attitude and forward speed. Conventional PID control is applied to generate the control inputs. The simulation results conclude that the pusher quadplane configuration is effortless to control as all the selected states are controllable, whereas for the tilt-rotor configuration, even though the vehicle is stable, altitude control is significantly more challenging due to one less control input when compared to the pusher configuration. (C) 2019 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据