4.8 Article

Breaking Reciprocity with Space-Time-Coding Digital Metasurfaces

期刊

ADVANCED MATERIALS
卷 31, 期 41, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201904069

关键词

digital metasurfaces; frequency conversion; nonreciprocity; programmable; space-time-coding

资金

  1. National Key Research and Development Program of China [2017YFA0700201, 2017YFA0700202, 2017YFA0700203]
  2. National Natural Science Foundation of China [61631007, 61571117, 61501112, 61501117, 61522106, 61731010, 61735010, 61722106, 61701107, 61701108]
  3. 111 Project [111-2-05]
  4. Postgraduate Research AMP
  5. Practice Innovation Program of Jiangsu Province [KYCX18_0097]
  6. Scientific Research Foundation of Graduate School of Southeast University [YBPY1858]
  7. Italian Ministry for Education, University and Research (MIUR) through the Funding for Basic Activities Related to Research (FFABR)

向作者/读者索取更多资源

Metasurfaces are artificially engineered ultrathin structures that can finely tailor and control electromagnetic wavefronts. There is currently a strong interest in exploring their capability to lift some fundamental limitations dictated by Lorentz reciprocity, which have strong implications in communication, heat management, and energy harvesting. Time-varying approaches have emerged as attractive alternatives to conventional schemes relying on magnetic or nonlinear materials, but experimental evidence is currently limited to devices such as circulators and antennas. Here, the recently proposed concept of space-time-coding digital metasurfaces is leveraged to break reciprocity. Moreover, it is shown that such nonreciprocal effects can be controlled dynamically. This approach relies on inducing suitable spatiotemporal phase gradients in a programmable way via digital modulation of the metasurface-elements' phase repsonse, which enable anomalous reflections accompanied by frequency conversions. A prototype operating at microwave frequencies is designed and fabricated for proof-of-concept validation. Measured results are in good agreement with theory, hence providing the first experimental evidence of nonreciprocal reflection effects enabled by space-time-modulated digital metasurfaces. The proposed concept and platform set the stage for on-demand realization of nonreciprocal effects, in programmable or reconfigurable fashions, which may find several promising applications, including frequency conversion, Doppler frequency illusion, optical isolation, and unidirectional transmission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据