4.8 Article

Plasmonic Pt Superstructures with Boosted Near-Infrared Absorption and Photothermal Conversion Efficiency in the Second Biowindow for Cancer Therapy

期刊

ADVANCED MATERIALS
卷 31, 期 46, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201904836

关键词

NIR-II biowindow; photothermal therapy; plasmons; platinum; superstructures

资金

  1. National Natural Science Foundation of China [21590794, 21771173, 21521092, 51872205, 51502284]
  2. Youth Innovation Promotion Association of Chinese Academy of Sciences [2011176, 2019232]
  3. CAS-CSIRO project [GJHZ1730]

向作者/读者索取更多资源

Photothermal therapy triggered by near-infrared light in the second biowindow (NIR-II) has attracted extensive interest owing to its deeper penetration depth of biological tissue, lower photon scattering, and higher maximum permissible exposure. In spite of noble metals showing great potential as the photothermal agents due to the tunable localized surface plasmon resonance, the biological applications of platinum are rarely explored. Herein, a monocomponent hollow Pt nanoframe (Pt Spirals), whose superstructure is assembled with three levels (3D frame, 2D layered shells, and 1D nanowires), is reported. Pt Spirals exhibit outstanding photothermal conversion efficiency (52.5%) and molar extinction coefficients (228.7 m(2) mol(-1)) in NIR-II, which are much higher than those of solid Pt cubes. Simulations indicate that the unique superstructure can be a significant cause for improving both adsorption and the photothermal effect simultaneously in NIR-II. The excellent photothermal effect is achieved and subsequently verified in in vitro and in vivo experiments, along with superb heat-resistance properties, excellent photostability, and a prominent effect on computed tomography (CT) imaging, demonstrating that Pt Spirals are promising as effective theranostic platforms for CT imaging-guided photothermal therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据