4.8 Article

Entirely, Intrinsically, and Autonomously Self-Healable, Highly Transparent, and Superstretchable Triboelectric Nanogenerator for Personal Power Sources and Self-Powered Electronic Skins

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 40, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201904626

关键词

electronic skins; human-device interfaces; power sources; self-healing; triboelectric nanogenerators

资金

  1. Ministry of Science and Technology [106-2112-M-005-010, 107-2218-E-005-021, 108-2636-E-007-005, 107-2622-8-007-01]

向作者/读者索取更多资源

Power and electronic components that are self-healable, deformable, transparent, and self-powered are highly desirable for next-generation energy/electronic/robotic applications. Here, an energy-harvesting triboelectric nanogenerator (TENG) that combines the above features is demonstrated, which can serve not only as a power source but also as self-powered electronic skin. This is the first time that both of the triboelectric-charged layer and electrode of the TENG are intrinsically and autonomously self-healable at ambient conditions. Additionally, comparing with previous partially healable TENGs, its fast healing time (30 min, 100% efficiency at 900% strain), high transparency (88.6%), and inherent superstretchability (>900%) are much more favorable. It consists of a metal-coordinated polymer as the triboelectrically charged layer and hydrogen-bonded ionic gel as the electrode. Even after 500 cutting-and-healing cycles or under extreme 900%-strain, the TENG retains its functionality. The generated electricity can be used directly or stored to power commercial electronics. The TENG is further used as self-powered tactile-sensing skin in diverse human-machine interfaces including smart glass, an epidermal controller, and phone panel. This TENG with merits including fast ambient-condition self-healing, high transparency, intrinsic stretchability, and energy-extraction and actively-sensing abilities, can meet wide application needs ranging from deformable/portable/transparent electronics, smart interfaces, to artificial skins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据