4.8 Article

Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 46, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201905785

关键词

bioelectrocatalysis; energy harvesting; flexible electronics; paper electrode; screen printing

向作者/读者索取更多资源

This work demonstrates a stretchable and flexible lactate/O-2 biofuel cell (BFC) using buckypaper (BP) composed of multi-walled carbon nanotubes as the electrode material. Free-standing BP, functionalized with a pyrene-polynorbornene homopolymer, is fabricated as the immobilization matrix for lactate oxidase (LOx) at the anode and bilirubin oxidase at the cathode. This biofuel cell delivers an open circuit voltage of 0.74 V and a high-power density of 520 mu W cm(-2). The functionalized BP electrodes are assembled onto a stretchable screen-printed current collector with an island-bridge configuration, which ensures conformal contact between the wearable BFC and the human body and endows the BFC with excellent performance stability under stretching condition. When applied to the arm of the volunteer, the BFC can generate a maximum power of 450 mu W. When connected with a voltage booster, the on-body BFC is able to power a light emitting diode under both pulse discharge and continuous discharge modes during exercise. This demonstrates the promising potential of the flexible BP-based BFC as a self-sustained power source for next-generation wearable electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据