4.8 Article

Fingerprint-Inspired Conducting Hierarchical Wrinkles for Energy-Harvesting E-Skin

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 29, 期 43, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201903580

关键词

conducting wrinkles; energy harvesting; pressure sensor; silver nanowires; triboelectric nanogenerator

资金

  1. National Key Research and Development Program of China [2016YFA0202703]
  2. National Natural Science Foundation of China [51605034, 51711540300]
  3. Hundred Talents Program of the Chinese Academy of Science
  4. Center for Advanced Soft Electronics (CASE) under the Global Frontier Research Program [NRF-2013M3A6A5073177]
  5. Construction Technology Research Project - Ministry of Land, Infrastructure and Transport [18SCIP-B146646-01]
  6. State key laboratory of precision measuring technology and instruments (Tianjin University)

向作者/读者索取更多资源

In the field of bionics, sophisticated and multifunctional electronic skins with a mechanosensing function that are inspired by nature are developed. Here, an energy-harvesting electronic skin (energy-E-skin), i.e., a pressure sensor with energy-harvesting functions is demonstrated, based on fingerprint-inspired conducting hierarchical wrinkles. The conducting hierarchical wrinkles, fabricated via 2D stretching and subsequent Ar plasma treatment, are composed of polydimethylsiloxane (PDMS) wrinkles as the primary microstructure and embedded Ag nanowires (AgNWs) as the secondary nanostructure. The structure and resistance of the conducting hierarchical wrinkles are deterministically controlled by varying the stretching direction, Ar plasma power, and treatment time. This hierarchical-wrinkle-based conductor successfully harvests mechanical energy via contact electrification and electrostatic induction and also realizes self-powered pressure sensing. The energy-E-skin delivers an average output power of 3.5 mW with an open-circuit voltage of 300 V and a short-circuit current of 35 mu A; this power is sufficient to drive commercial light-emitting diodes and portable electronic devices. The hierarchical-wrinkle-based conductor is also utilized as a self-powered tactile pressure sensor with a sensitivity of 1.187 mV Pa-1 in both contact-separation mode and the single-electrode mode. The proposed energy-E-skin has great potential for use as a next-generation multifunctional artificial skin, self-powered human-machine interface, wearable thin-film power source, and so on.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据