4.7 Article

Compression-compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting

期刊

ACTA MATERIALIA
卷 181, 期 -, 页码 49-66

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2019.09.042

关键词

Additive manufacturing; Selective laser melting; Triply periodic minimal surface; Porous structure; Fatigue properties; Stainless steel

资金

  1. National Natural Science Foundation of China [51671091]
  2. China Scholarship Council [201706160036]

向作者/读者索取更多资源

Triply Periodic Minimal Surface (TPMS) porous structures are recognized as the most promising bionic artificial structures for tissue engineering. The fatigue properties of additive manufactured porous structures are essential for long-term use in a dynamical bio-skeletal environment. The aim of this study is to study the compression-compression fatigue behaviour and the underlying fatigue mechanism of Gyroid cellular structures (GCS), a typical TPMS porous structure. The high-cycle fatigue results show that both cyclic ratcheting and fatigue damage phenomena contribute to the failure of GCS during fatigue testing. For most fatigue loading stress, the failure samples have nearly 45 degrees fracture bands along the diagonal surface. The fatigue ratio of GCS reaches 0.35 for as-built samples and can be raised to 0.45 after sandblasting treatment. The fatigue ratio values are higher than most of the other bending-dominated lattice structures, suggesting superior fatigue resistance properties of GCSs due to the smooth surface connection between struts. Besides, a systematic investigation of the crack initiation and propagation was conducted by both deformation analysis and finite element method to support experimental phenomena. The results also indicate that the fatigue resistance properties of GCSs are significantly enhanced by sandblasting post-treatment, through removing the adhered powder particles, inducing compressive residual stress on the surface and generating a nanocrystalline zone. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据