4.8 Article

Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes

期刊

ACTA BIOMATERIALIA
卷 94, 期 -, 页码 232-242

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2019.06.024

关键词

Skeletal muscle; C2C12; Electrospun fibrin hydrogel; Tensile strain; Bioreactors; Regenerative medicine

资金

  1. Maryland Stem Cell Research Fund [2016-MSCRFI-2692, EY001765]

向作者/读者索取更多资源

Engineered skeletal muscle grafts may be employed in various applications including the treatment of volumetric muscle loss (VML) and pharmacological drug screening. To recapitulate the well-defined structure of native muscle, tensile strains have been applied to the grafts. In this study, we cultured C2C12 murine myoblasts on electrospun fibrin microfiber bundles for 7 days in custom-built bioreactor units and investigated the impact of strain regimen and delayed onset of tensile straining on myogenic outcomes. The substrate topography induced uniaxial alignment of cells in all (strained and unstrained) groups. The engineered grafts in strained groups were subjected to 10% strain amplitude for 6 h per day. We found that both static and cyclic uniaxial strains resulted in similar morphological and gene expression outcomes. However, relative to 0% strain groups, there were stark increases in myotube diameter, myosin heavy chain (MHC) coverage, and expression of key myogenic genes (Pax 7, Troponin, MHC I, MHC IIb, MHC IIx) only if strain was applied at Days 5-7 rather than Days 3-7. This finding suggests that a critical indicator of myogenic improvement under strain in our system is the phenotype of the cells at the onset of strain and suggests that this is a key parameter that should be considered in studies where myoblasts are subjected to biophysical stimulation to promote tissue formation. Statement of Significance This is the first report on the impact of the timing of the initial application of mechanical strain for improving the myogenic outcomes of 3D engineered skeletal muscle grafts. In this work, immature skeletal myoblasts were grown on topographically aligned, electrospun fibrin microfiber bundles and we applied 10% uniaxial static or cyclic strain. We concluded that the maturity of myoblasts prior to strain application, rather than strain waveform, was the primary predictor of improved myogenic outcomes, including myogenic gene expression and myotube morphology. Elucidating the optimal conditions for strain application is a vital step in recapitulating physiological myogenic properties in tissue engineered skeletal muscle constructs, with applications for treating volumetric muscle loss, disease modeling, and drug testing. (C) 2019 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据